


atoms (residues 1–27, 29–38, and 39–172). The r.m.s. devia-
tions are �1.3 and 1.4 Å between TmHslV (1M4Y) and Form-I
and -II for 170 matching C� atoms (residues 1–27, 29–40,
41–116, and 118–172). Therefore, the overall structural devia-
tions between HslVs are marginal.
An axial entrance pore at the hexameric ring is one of the

conserved structural characteristics of HslV (Fig. 6A). The
entrance pore of TbHslV is a circular shape with a distance of
18.2, 18.5, and 18.5 Å for Form-I and 17.2, 18.7, and 19.0 Å for
Form-II, respectively (measuring the distance for three pairs of
the C� atom of Arg86 on six subunits). The axial entrance pore
of TbHslV is slightly smaller than that of other HslVs. The
entrance pore size of TmHslV is 19.4, 20.1, and 22.0 Å. How-
ever, the entrance pore of the other HslVs has a more elliptical
shape with values of 13.1, 19.1, and 25.7 Å for E. coli and 13.1,
19.1, and 25.7 Å forH. influenzae, respectively. Indeed, the size
of entrance pore of HslV also varies upon complex formation
with HslU (16, 20) (Fig. 7A). Loops with many basic arginine
residues in the entrancepore are intrinsically flexible (15, 16). Sub-
sequently, the size of the entrance pore of HslV in the complexed
state is greater than that of HslV alone and ismechanistically sim-
ilar to the entrance pore of the homologous ATP-dependent pro-
tease, ClpP (49, 50), and the 20 S proteasome (51, 52).

DISCUSSION

ATP-dependent two-component proteases exist in all three
kingdoms of life. The matching symmetry of HslVU consisting

of 6-fold HslU ATPase and 6-fold HslV protease is different
from that of the eukaryotic 26 S proteasome, which consists of
pseudo-6-fold ATPases of the base of the 19 S regulatory parti-
cle and 7-fold 20 S proteolytic core. However, the HslV and 20
S proteasome have relatively high structural and sequence sim-
ilarity, including the same catalytic N-terminal threonine resi-
due (3), suggesting that the HslVU complex is an ancestral type
of 26 S proteasome. It has been reported that the HslVU com-
plex only exists in prokaryotes and archaea, whereas the pro-
teasome is present in eukaryotes and archaea (3). In contrast
with this hypothesis, the symmetry-mismatched two-compo-
nent protease ClpXP was identified in chloroplasts and mito-
chondria of eukaryotes more than 2 decades ago and has been
studied extensively (53–56). The coexistence of the HslVU
complex and proteasome in eukaryotes has been reported only
recently (23, 26–29). The HslVU complex in prokaryotes and
archaea possesses a simple architecture consisting of a
homododecameric HslV and two homohexameric HslUs, but
archaeal and eukaryotic proteasomes display a more compli-
cated configuration. In archaea, several proteasomal ATPases,
including proteasome-activating nucleotidase and CDC48,
constitute a regulatory network (57), and in eukaryotes, hetero-
oligomeric ATPases function within the base of the 19 S regu-
latory particle. In contrast to prokaryotic and archaeal HslUs,
the eukaryotic HslUs from T. brucei and Leishmania donovani
possess two HslU homologs, HslU1 and HslU2 (28, 29); this
suggests several possible configurations of the T. bruceiHslVU
complex from a structural point of view: 1) two independent
TbHslVU1 and TbHslVU2 complexes; 2) TbHslV asymmetri-
cally capped with hexameric rings of TbHslU1 and TbHslU2,
and 3) TbHslV complexed with the hetero-oligomeric TbHslU
ring consisting of both TbHslU1 and TbHslU2. The latter case
allows for many different combinations, such as different stoi-
chiometries of TbHslU1 and TbHslU2 in the hexameric ring or
different symmetries (3-fold, alternative arrangement; 2-fold,
three consecutive arrangements) even in the 1:1 composite. As
shown in our biochemical data (Fig. 2A), the C-terminal seg-
ment of TbHslU2 successfully activates TbHslV, whereas that
of TbHslU1 does not. Furthermore, TbHslU1 and TbHslU2 do
not act synergistically to stimulate the protease activity of
TbHslV (Fig. 2A). These results rule out the existence of
TbHslVU2 and most probably the asymmetrical capped
TbHslU1-TbHslV-TbHslU2 complex. Our coexpression experi-
ment of both TbHslU1 and TbHslU2 in E. coli did not produce
any hetero-oligomers, and more importantly, TbHslV was
found to form homo-oligomers and thus possesses all of the
same HslU-binding pockets. The TbHslV as well as both
TbHslU1 and TbHslU2 are targeted to mitochondria (28);
therefore, we speculate that TbHslVU2 and TbHslU1 inde-
pendently function in regulating mitochondrial DNA.
The reasonwhy only TbHslU2 is able to activate the protease

activity of TbHslV remains unclear. TbHslU2 shares high
sequence similarity with TbHslU1, as well as with other pro-
karyotic HslUs (28). Indeed, only the C-terminal segment of
HslU participates in binding with HslV (16) and can replace
full-length HslU functionally (8, 30). From our biochemical
assay, it is evident that Tyr494 is a key determinant of HslV
activation (Fig. 5A). In order to understand the structural basis

FIGURE 6. Overall structure of TbHslV and comparison with other
HslVs. A, ribbon diagram of dodecameric TbHslV viewed along a 6-fold
molecular symmetry axis (left). Monomers are colored differently for clarity.
A side view of the TbHslV shows a 2-fold molecule symmetry at the center
of the molecule (right). B, superposition of TbHslV and other HslVs viewed
along a 6-fold axis. For clarity, only the upper hexameric ring is shown. The
colors for each molecule are blue, red, and green for TbHslV, EcHslV, and
HiHslV, respectively. C, comparison of monomeric subunits among
TbHslV, EcHslV, and HiHslV (and HiHslV in complex with HiHslU) colored as
in B. The bound C-terminal segment of HiHslU is shown as a red trace
(HiHslVU complex).
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for the activation of TbHslV by TbHslU2, the crystal structure
of the TbHslVU2 complex is required. Unfortunately, we were
unable to obtain this crystal, but a homology model of TbHslV
in complex with TbHslU2 can be built using the only available
functional HslVU structure fromH. influenzae (16). The C-ter-
minal segment of TbHslU2 also shows a high degree of
sequence conservation with that of HiHslU (Fig. 1B), and the
structure of TbHslV is quite similar to that of HiHslV (Fig. 6B).
Because there is an allosteric conformational change in HslV
upon complex formation with HslU (19), we used the HslU-
bound HslV as a template for modeling. Therefore, the model
of TbHslV complexed with C-terminal segment of TbHslU2
depends on the original complex structure. In particular, the sec-
ond helix containingArg83, which participates in salt bridges with
the neighboring subunit, shows different structures for apo- and
TbHslU2-complexed TbHslV (Fig. 7,A andC).
In the HiHslVU complex, the Arg35 in HiHslV forms hydro-

gen bonds with the main chain atoms of Arg441U and Ile443U of
HiHslU (Fig. 7D). For clarity, a “U” is used for the residues of
HslU. In addition, Lys28 and the adjacent monomer Ala83 in
HiHslV form hydrogen bonds with the main chain atoms of
Leu444U and Phe442U of HiHslU, respectively. Arg441U also
forms a salt bridge with Glu61. In addition to the aforemen-
tioned interactions, two C-terminal terminal residues, Ile443U
and Leu444U, bind tightly to the surrounding hydrophobic res-
idues of HiHslV.
In theTbHslVU complexmodel, Arg36might formhydrogen

bonds with the main chain atoms of Lys493U and Ile495U of

TbHslU2 (Fig. 7E). The critical residue for TbHslV activation is
Tyr494U (Fig. 5A), and its equivalent residue in HiHslV is
Phe442U. Therefore, the hydroxyl moiety of TbHslU2must play
a critical role in binding. Interestingly, the hydrophobic inter-
action between TbHslV and TbHslU appears much weaker
than that between HiHslV and HiHslV. The residues for
accommodating the C-terminal tail of HiHslU, Phe54, Phe57,
and Gln114n are replaced with smaller or shorter residues (i.e.
Ile54, Met57, and Thr114n, respectively) in TbHslV. This
explains why EcHslU and TbHslU1 are not able to activate
TbHslV,most probably due to theweak binding. Consequently,
this replacement with smaller residues may provide space for
swinging over the critical tyrosine residue to achieve tighter
binding in the TbHslVU2 complex (Fig. 7E). Indeed, our mod-
eling study shows that the side chain of Tyr494U could fit into a
different rotamer position and that the hydroxyl group forms a
hydrogen bond with the main chain atoms of Ala79 (Fig. 7E).
When we analyzed the sequences of several eukaryotic HslUs,
many of them were found to have a tyrosine residue at the
equivalent position (see the ExPASy Web site). For example,
there are two potential HslUs in L. donovani, and HslU1
(E9BC50_LEIDB) andHslU2 (E9B9S7_LEIDB) have phenylala-
nine and tyrosine residues at the critical position, respectively. An
HslV ortholog in Plasmodium falciparum also has a tyrosine resi-
due at this site (26). Therefore, we infer that the existence of the
tyrosine residue in this position can determine the selection of
functional HslUmolecules in the eukaryotic HslVU system.

FIGURE 7. Model of the TbHslV-TbHslU2 complex. A, each monomer in TbHslV is colored green, and one monomer is shown in blue for clarity. B, each
monomer in HiHslV is colored dark green, and one monomer is shown in turquoise. Bound C-terminal segments of HiHslU are colored orange. C, each
monomer in the TbHslVU complex model and the C-terminal segments of TbHslU are colored red. A–C, the orientation of the model is the same as that
in Fig. 6A. The loops forming the central pore show different conformations for free and HslU-complexed HslVs. D, close-up view of the HslU recognition
of HiHslV (Protein Data Bank code 1G3K). E, same region of the TbHslV model in complex with the TbHslU2 peptide. The colors for carbon atoms are the
same as in A–C. The important residues for the interaction between HslV and HslU are shown as a stick model and labeled. For clarity, a subscript “U” is
added for HslU residues, and a letter n is added for adjacent subunits of HslV. Oxygen and nitrogen atoms are colored red and blue, respectively.
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samen-Schaeff, H., Brötz-Oesterhelt,H., and Song,H.K. (2010) Structures
of ClpP in complex with acyldepsipeptide antibiotics reveal its activation
mechanism. Nat. Struct. Mol. Biol. 17, 471–478

50. Lee, B. G., Kim, M. K., and Song, H. K. (2011) Structural insights into the
conformational diversity of ClpP from Bacillus subtilis. Mol. Cells 32,
589–595
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