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AlphaFold2 was developed by DeepMind (UK), an artificial intelligence subsidiary of Alphabet Inc. (USA). AlphaFold2 is a deep 

learning system that is revolutionizing biology by producing accurate structural predictions of target proteins. However, AlphaFold2 

still has various limitations. Experimental techniques have played a major role in determining the three-dimensional structures of 

proteins, and they have coevolved with in silico methods for mutual benefit. The figure was envisioned from a 1602 painting, “Domine, 

quo vadis?” by the Italian Baroque painter Annibale Carracci. The representative AlphaFold model on the right is a leucine-rich repeat 

and sterile alpha motif containing 1 isoform, CRA_a (UniProt: A0A024R870). The raw electron micrograph and diffraction image on 

the left are unpublished.
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In 2020, AlphaFold2 protein structure prediction was pre-

sented at the 14th meeting of the Critical Assessment of 

Structure Prediction (CASP14) and fundamentally changed 

the structural biology field (Callaway, 2020; Jumper et al., 

2021). AlphaFold2’s accurate performance has greatly im-

pacted structural biology and medicine research. The Alpha-

Fold2 neural network algorithm is based on deep learning 

processes that use prior knowledge of protein structures and 

multiple sequence alignments to accurately predict protein 

structures from the sequence data (Jumper et al., 2021). 

The deep learning system enabled the establishment of an 

AlphaFold database larger than the Protein Data Bank, which 

contains protein structures obtained using experimental 

techniques such as X-ray crystallography, cryogenic electron 

microscopy, and nuclear magnetic resonance spectroscopy. 

DeepMind and EMBL-EBI have made over 200 million pre-

dicted protein structures publicly available (https://alphafold.

ebi.ac.uk) by including them in the UniProt database. Protein 

structures obtained using experimental techniques have 

historically been preferred over in silico predicted structures, 

mainly because of their accuracy. However, AlphaFold2 pre-

dictions are very reliable, as assessed by the structural biology 

community (Akdel et al., 2022). The experimental determi-

nation of protein structures is extremely painstaking and can 

take several years to complete, depending on the characteris-

tics of the target molecules. In contrast, AlphaFold2 can gen-

erate highly accurate structures quickly (depending on the 

protein size). AlphaFold2 does not require expensive sample 

preparation or huge facilities such as the synchrotron facility, 

the Titan Krios microscope, or powerful magnets. Therefore, 

are experimental techniques in structural biology a thing of 

the past?

	 In the view of experimental structural biologists, the an-

swer is no, as AlphaFold2 predictions still have limitations 

(Callaway, 2022). An important limitation is that although 

AlphaFold2 can accurately predict static protein structures, it 

cannot predict dynamic states, which are physiologically rel-

evant. The native structures of many proteins are metastable 

and not necessarily the most energetically stable structures 

(Ghosh and Ranjan, 2020). For example, kinases fold into 

inactive conformations without signals but change into ac-

tive conformations in response to signals to perform their 

roles in signal transduction (Huse and Kuriyan, 2002). Serpin 

protease inhibitors fold into different conformational states 

in cells, namely cleaved, active, and latent conformations 

(Ghosh and Ranjan, 2020). Depending on the reaction steps, 

the proteolytic chamber of the self-compartmentalizing ca-

seinolytic protease shows conformational diversity (Kim et 

al., 2022). Depending on cellular conditions, such as pH, an 

autophagic receptor formed a filamentous assembly (Kwon 

et al., 2018), and cytoskeletal proteins were found to polym-

erize and depolymerize dynamically (Goodson and Jonasson, 

2018). Generally, multiprotein complexes (including fibrous 

assemblies) are not accurately predicted by AlphaFold2. An 

important limitation is that the structures of protein complex-

es with nonprotein ligands (e.g., small compounds with ther-

apeutic potential or binding partners, such as DNA or RNA) 

are not well predicted by AlphaFold2, which was developed 

and trained for protein structure determination but not for 

docking (Jumper et al., 2021). Furthermore, protein modi-

fications such as phosphorylation, glycosylation, lipidation, 

acetylation, and methylation affect the accuracy of Alpha-

Fold2 predictions (Callaway, 2023). Like experimental tech-

niques, the AlphaFold2 structures of intrinsically disordered 

proteins are mostly inaccurate. Furthermore, a single-point 

mutation can drastically affect protein folding, but the Al-

phaFold2 predicted structures of the mutated and wild-type 

proteins are often very similar. To overcome these limitations, 

numerous approaches are ongoing (Varadi and Velankar, 

2022) and have been introduced in the recent CASP15 (Cal-

laway, 2023). These efforts continuously strengthen artificial 

intelligence-based structure predictions. Perhaps one day, se-

quence-to-structure prediction will be straightforward for all 

situations, including all the components in entire organelles 

or even cells. However, given the complexity of biology, this 

may be some time away.

	 Nonetheless, the relatively accurate AlphaFold2 predictions 

have changed structural biology and related fields in a posi-

tive way. For initial model building with low-resolution exper-

imental data from X-ray crystallography or cryogenic electron 

microscopy, AlphaFold2 can be greatly advantageous. Many 

successful examples of using AlphaFold2 models to obtain 

the phases of X-ray data with molecular replacement, model 

building for uninterpretable electron density, and biochemi-

cal experiments based on AlphaFold2 models (Cramer, 2021; 

Kleywegt and Velankar, 2022) are available. Although the 

accuracy of AlphaFold2 is not yet high enough for docking 

studies, rational drug design based on AlphaFold2’s predict-

ed models will likely expand enormously in the near future 

(Varadi and Velankar, 2022). To fully understand biology, 

various hybrid and integrated approaches are inevitable, and 

therefore experimental structural biologists can focus on oth-

er biochemical, biophysical, and cell biology experiments. Ex-

perimental structural biologists will still be needed to validate 

the structure of uncertainly predicted models. Artificial intel-

ligence-based structural biology is one of the biggest trends, 

and experimental structural biologists may have to tread a 

thorny path. This situation reminded me of a scene from the 

Apocrypha Acts of Peter.

	 Peter: Domine, quo vadis? / Jesus: Romam vado iterum 

crucifigi.

	 When Peter asked Jesus where he was going, Jesus replied 

that he was going to Rome to be crucified again. Of course, 

it is not directly comparable, but the notion is that structure 

determination using experimental techniques is extremely 

difficult compared with computational prediction. It is my 

view that experimental and prediction methods will continue 

to coevolve to answer complex biological questions.
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