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The cytoplasm in mammalian cells is a battlefield between the 

host and invading microbes. Both the living organisms have 

evolved unique strategies for their survival. The host utilizes a 

specialized autophagy system, xenophagy, for the clearance 

of invading pathogens, whereas bacteria secrete proteins to 

defend and escape from the host xenophagy. Several mole-

cules have been identified and their structural investigation 

has enabled the comprehension of these mechanisms at the 

molecular level. In this review, we focus on one example of 

host autophagy and the other of bacterial defense: the au-

tophagy receptor, NDP52, in conjunction with the sugar re-

ceptor, galectin-8, plays a critical role in targeting the autoph-

agy machinery against Salmonella; and the cysteine protease, 

RavZ secreted by Legionella pneumophila cleaves the LC3-PE 

on the phagophore membrane. The structure-function rela-

tionships of these two examples and the directions of future 

research will be discussed. 
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INTRODUCTION 
 

Autophagy is an evolutionarily conserved cellular pathway 

that delivers cytoplasmic proteins and organelles to the lyso-

some for degradation in eukaryotic cells (Huang and Klion-

sky, 2007; Levine and Klionsky, 2017; Nah et al., 2015; Na-

katogawa et al., 2009; Wen and Klionsky, 2016). In contrast 

to the ubiquitin-proteasome system, autophagy can degrade 

the comparatively large substrates, including protein  

aggregates, cellular organelles, and invading pathogens 

(Levine et al., 2011; Mizushima, 2011). Initially, autophagy 

was thought to be a nonselective pathway for the degrada-

tion of cytoplasmic components to provide energy and aid 

survival in nutrient-deprived conditions (Mizushima et al., 

1998). However, many recent studies of selective autophagy 

have been reported (Boyle and Randow, 2013; Farre and 

Subramani, 2016; Kim et al., 2013; 2015; 2016; Kim and 

Song, 2015; Kwon et al., 2017b; Liu and Du, 2015; Sven-

ning and Johansen, 2013; Zaffagnini and Martens, 2016). 

Selective autophagy requires specific autophagy receptors 

and is referred to by different terms based on the cargo 

molecules: aggrephagy (protein aggregates), lysophagy (ly-

sosomes), mitophagy (mitochondria), pexophagy (peroxi-

somes), and xenophagy (invading pathogens). The sub-

strates for selective autophagy are recognized either directly 

or indirectly by phagophores. In mitophagy, phagophore-

conjugated LC3-family proteins directly recognize the mito-

chondrial proteins NIX, BNIP3, and FUNDC1 (Liu et al., 2014). 

In contrast, other selective autophagy receptors, such as 

p62/SQSTM1, NDP52 (also known as CALCOCO2), and 

optineurin (OPTN), simultaneously recognize membrane-

conjugated LC3-family proteins and autophagy substrates 

(Boyle and Randow, 2013). 

As indicated, the autophagic process utilized for the deg-

radation of bacteria or viruses is termed ‘xenophagy’ (Levine, 

2005). Infectious bacteria are cleared from human cells by 

host autophagy in combination with other upstream cellular 

components, such as autophagy receptors, ubiquitin (Ub), 

diacylglycerol, NOD proteins, galectin-8 (GAL8), and Ub E3- 
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ligases (Sorbara and Girardin, 2015). Furthermore, LC3-

associated phagocytosis has also been known as a novel 

form of non-canonical autophagy where LC3 is conjugated 

to single membrane phagosomes using a portion of the 

canonical autophagic molecules (Heckmann et al., 2017). 

However, as a survival mechanism, many bacteria have also 

evolved the ability to manipulate the host autophagy path-

way through the inhibition of the function of autophagic 

molecules. Therefore, our cellular environment is essentially 

a battlefield with microbes and protein molecules are the 

armor and weapons (Fig. 1). In this review, we discuss the 

interplay between bacteria and host autophagy from a struc-

tural biology perspective, including how the autophagic 

process targets bacteria for clearance and how bacteria 

block this process for survival. 

 

HOST DEFENSE USING AUTOPHAGY 
 

There are many different types of molecules involved in xe-

nophagy. Among them, autophagy receptors (also called 

cargo receptors or autophagy adaptors) are particularly im-

portant for selective autophagy (Kim et al., 2016; Svenning 

and Johansen, 2013; Zaffagnini and Martens, 2016). Au-

tophagy receptors commonly possess LIR (LC3-Interacting 

Region) and Ub-interacting domains (UBA, UBZ, and ZnF), 

which suggests that ubiquitylation and autophagy are closely 

linked (Ji and Kwon, 2017; Kim et al., 2016; Rahighi and 

Dikic, 2012). When bacteria invade mammalian cells, they 

are usually restricted within vacuoles; however, some of this 

bacterial population can escape from the vacuoles and enter 

the cytoplasm, and the vacuoles themselves can be ruptured 

by the bacterial growth (Fig. 1). The autophagic proteins of 

the host target the bacteria through multiple steps. 

 

Ubiquitin-coating of bacteria 
Bacteria are marked as degradation targets by the attach-

ment of Ub molecules in cells (Levine et al., 2011; Thurston 

et al., 2009). Therefore, it is natural that autophagy recep-

tors bridge ubiquitylated cargos, such as Ub-coated bacteria, 

to the autophagy pathway by using their LIR motif and Ub-

binding domains. Although this phenomenon was discov-

ered some time ago (Perrin et al., 2004), the molecular 

mechanism involved remains unclear. The E3-ligase that 

attaches Ub to bacteria has only recently been reported

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Overview of xenophagy. Bacteria invade mammalian cells and the carbohydrates originally exposed to the outside the cells are 

now towards the inside of the vacuoles (or phagosomes). Bacteria secrete effectors, such as Eis from Mycobacterium tuberculosis, ede-

ma factor toxin from Bacillus anthracis, and cholera toxin from Vibrio cholerae, to modulate the induction of the host cell autophagy 

signaling. Some bacteria escape from the vacuoles and are ubiquitylated by host E3 Ub-ligases, such as LRSAM1, PARKIN, and the 

LUBAC complex. Most of the bacteria are restricted inside the vacuoles; however, bacterial division ultimately causes the rupture of the 

phagosomal membrane and, subsequently, the carbohydrates are now exposed to the cytoplasmic space. This acts as a danger signal to 

the cells and the carbohydrates are recognized by the sugar receptor GAL8, which immediately recruits the autophagy receptor NDP52. 

This recognition step by the autophagy system is inhibited by bacterial proteins, such as RavZ from Legionella pneumophila, IcsB from 

Shigella flexneri, and ActA and internalin K (InlK) from Listeria monocytogenes. RavZ cleaves the LC3-PE molecule, leading to the com-

plete inactivation and significant damage to host autophagy. The fusion step between the autophagosome and lysosome for autolyso-

somes production is also blocked by VacA from Helicobacter pylori and ESAT-6 (early secreted antigenic target of 6 kDa) from Mycobac-

terium tuberculosis. In practice, each xenophagy step is much more detailed and there are many different pathways involved in different 

bacteria; these cannot be included in this simplified version. 
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(Celli, 2012; Huett et al., 2012). Through the genome-wide 

analysis of leucine-rich repeat (LRR)-containing proteins, 

LRSAM1 (leucine-rich repeat and sterile alpha motif contain-

ing protein 1) was identified as a component of the antibac-

terial autophagic response (Ng and Xavier, 2011; Ng et al., 

2011), and later, LRSAM1 was identified as the E3 ligase 

responsible for bacteria-associated ubiquitylation prior to 

autophagy (Huett et al., 2012). The LRR domain in LRSAM1 

has been shown to be critical for bacterial targeting, where-

as the C-terminal RING domain is important for the ubiq-

uitylation of invading pathogens (Huett et al., 2012). Fur-

thermore, LRSAM1 also binds the autophagy receptor 

NDP52, which subsequently binds the Ub chains and au-

tophagic LC3 protein via UBZ and LIR, respectively. Interest-

ingly, the ubiquitylation of Mycobacterium tuberculosis by 

Parkin, a well-known E3 Ub-ligase involved in mitophagy, 

has been also reported, which implied the existence of a 

functional link between mitophagy and xenophagy 

(Manzanillo et al., 2013). Very recently, it was reported that 

the E3-ligase LUBAC (Linear Ub Chain Assembly Complex) 

generated M1-linked linear poly-Ub patches in the bacteria, 

which serve as antibacterial and pro-inflammatory signaling 

platforms (Noad et al., 2017). This showed the coordination 

of two different defense pathways: xenophagy and NF-kB 

signaling. Ubiquitylation is an early step of xenophagy (Fig. 

1); once bacteria are captured in an autophagosome, the 

subsequent steps are essentially the same as those enacted 

in the regular autophagy process. 
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Fig. 2. Structure-function relationship of the interaction between galectin-8 and NDP52 for clearing invading Salmonella. (A) Domain 

structure of NDP52 and the interacting proteins, LC3C, GAL8, and Ub. SKICH (skeletal muscle and kidney-enriched inositol phosphatase 

carboxyl homology), CLIR (non-canonical LC3-interaction region), CC (coiled coil), GALBI (galectin-8 binding), and UBZ (ubiquitin-

binding zinc finger) domains are colored light brown, orange, green, yellow, and purple, respectively. The interacting LC3C, GAL8, and 

Ub are colored sky blue, salmon, and gray, respectively. (B) The structures of each domain complexed with the interacting partner. The 

color scheme is the same as for panel (A). The atomic resolution structure of the central CC domain of NDP52 is not available, but the 

homodimer forms parallel to CC were revealed by ACCORD and SAXS experiments (Kim et al., 2017). (C) A schematic model for Sal-

monella clearance in collaboration between NDP52 and GAL8. The structures and colors for the molecules are the same as panels (A) 

and (B). The SCV (Salmonella-containing vacuole) is ruptured and the carbohydrates are now exposed to the cytoplasm in mammalian 

cells. The sugar receptor GAL8 recognizes the carbohydrate by using N-CRD and, simultaneously, the C-CRD of GAL8 binds to the 

GALBI region of NDP52. The parallel CC dimer of NDP52 is critical for the proper orientation of this bridging molecule. In homodimeric 

NDP52, both GALBI regions point towards SCV and both LIR motifs orient towards LC3-anchored phagophore with proper spacing 

defined by the length of CC. Then, the phagophore membrane engulfs the Salmonella to complete the autophagosome.
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Collaboration between autophagy receptor NDP52 and 
sugar receptor galectin-8 in xenophagy 
As noted, the Ub-binding domain of autophagy receptors is 

particularly important in the recognition of Ub-coated bacte-

ria. At present, at least five selective autophagy receptors 

have been well-studied (p62/SQSTM1, NBR1, NDP52, OPTN, 

and TAX1BP1). These autophagy receptors have hetero- or 

homo-oligomerization domains (p62 and NBR1: PB1 do-

main; NDP52, OPTN, and TAX1BP1: coiled-coil (CC) domain), 

which maximize the effect of cargo recognition or strongly 

interact with phagophore membranes (Behrends and Fulda, 

2012). Further, receptor-specific domains allow the proteins 

to participate in diverse cellular signaling. In particular, NDP52 

participates in xenophagic processes related to infectious 

pathogens, including Salmonella enterica serovar Typhimuri-

um (hereafter, S. typhimurium), Listeria monocytogenes, 
Mycobacterium tuberculosis, and Shigella. NDP52 consists of 

a SKICH domain, LIR motif, CC domain, GALBI (galectin-8 

binding) region, and UBZ domain (Fig. 2A). The unique 

GALBI region plays a critical role in the interaction with sugar 

receptor, GAL8, to clear invading Salmonella (Thurston et al., 

2012). 

Carbohydrates located on mammalian cell surfaces are not 

exposed to the cytoplasm. Therefore, it has been proposed 

that these carbohydrates may represent a type of danger 

signal that is recognized by the danger receptors in the cells 

(Fig. 1). Randow and colleagues identified several sugar 

receptors, the galectins, that recognize the carbohydrates 

when they are exposed through the rupture of Salmonella-

containing vacuoles (SCV); in particular, GAL8 binds to the 

carbohydrates and specifically recruits the autophagy recep-

tor (Thurston et al., 2012). GAL8 belongs to the class of 

galectins composed of tandem-repeat carbohydrate-

recognition domains (CRDs). Both N- and C-terminal CRDs 

(N-CRD and C-CRD) bind to carbohydrates with different 

specificities; interestingly, only C-CRD binds to the GALBI 

region (residues 372–380) of NDP52. Previous structural 

studies have elucidated the atomic details of how these two 

receptors interact with each other (Kim et al., 2013; Li et al., 

2013). Although the full-length structure of NDP52 remains 

unknown, the structures of each domain in complex with 

the interacting molecules, LC3C, GAL8, and Ub, have been 

determined (Fig. 2B), except for the central homodimeric CC 

domain. There are two possibilities for the orientation of CC, 

parallel and antiparallel, and ACCORD, an assessment tool to 

determine the orientation of CC has been applied and the 

NDP52 was determined to have a parallel CC (Kim et al., 

2017). The combination of all structural information has 

allowed a working model for the Salmonella targeting to 

phagophores to be constructed (Fig. 2C). 

 

MANIPULATION OF AUTOPHAGY BY MICROBES 
 

Although some bacteria are targeted and eliminated by xe-

nophagy, other bacteria have evolved mechanisms to coun-

ter or avoid this host defense system. Different bacterial spe-

cies utilize their unique mechanisms to escape host autoph-

agy, although the autophagosome in host can encapsulate 

many different intracellular bacteria through the xenophagic 

process. Therefore, diverse molecules from different bacteria 

are involved in this blockage of autophagy and these mole-

cules are usually not conserved in the bacterial kingdom. 

However, they are classified into two main mechanisms: 

autophagy disarming and camouflage (Sorbara and Girardin, 

2015). 

 

Unique strategies by different bacteria for inhibition of 
host autophagy 
Certain bacteria can inhibit autophagy induction signaling 

upstream of the autophagosome maturation (Shin et al., 

2010; Tattoli et al., 2012), evade autophagy recognition by 

masking the bacterial surface (Ogawa et al., 2005), interfere 

with the formation of the autophagosome (Choy et al., 

2012; Kwon et al., 2017b), and hijack autophagy for bacte-

rial replication (Sorbara and Girardin, 2015) (Fig. 1). Bacteria 

secrete their own factors for the modulation of host systems: 

Eis, anthrax toxin edema factor, and cholera toxin to inhibit 

the induction of autophagy; IcsB, ActA, and InlK to block the 

recognition of bacteria by the host autophagy system; RavZ 

and VirA to directly inhibit the autophagy components; and 

ESAT-6 and VacA to block the fusion step between the au-

tophagosome and the lysosome (Huang and Brumell, 2014). 

Functional and structural studies of these molecules are cur-

rently in progress to enable the comprehension of their sur-

vival mechanisms and the subsequent development of novel 

antibiotics. Their structures have been reported as follows: 

Eis from Mycobacterium tuberculosis (Chen et al., 2011; Kim 

et al., 2012; 2014), edema factor toxin from Bacillus anthra-
cis (Santelli et al., 2004; Shen et al., 2004), cholera toxin 

from Vibrio cholerae (Fan et al., 2004; Holmner et al., 2004; 

Merritt et al., 1994; Zhang et al., 1995), InlK from Listeria 
monocytogenes (Neves et al., 2013), RavZ from Legionella 
pneumophila (Horenkamp et al., 2015; Kwon et al., 2017a; 

2017b; Yang et al., 2017), VirA from Shigella flexneri (Davis 

et al., 2008; Germane et al., 2008), ESAT-6 from Mycobac-
terium tuberculosis (Renshaw et al., 2005), and VacA from 

Helicobacter pylori (Gangwer et al., 2007). Recently, we and 

other research groups determined the structures of RavZ 

from Legionella pneumophila (Horenkamp et al., 2015; 

Kwon et al., 2017a; 2017b; Yang et al., 2017) (Fig. 3A) and 

independently proposed its mode of action; however, the 

mechanism for LC3 deconjugation is controversial. Therefore, 

the current perspectives on RavZ molecule will be included in 

this review. 

 

LC3 deconjugating enzyme, RavZ, from Legionella 
pneumophila 
LC3B was originally identified as microtubule-associated pro-

teins 1A/1B light chain 3B encoded by the MAP1LC3B gene 

(He et al., 2003). It possesses a shared folding pattern with 

Ub, and the phosphatidylethanolamine (PE) conjugation to 

LC3 is catalyzed by sequential steps of the autophagic E1-, 

E2-, and E3-enzymes, which is quite similar to ubiquitylation 

(Hong et al., 2011; 2012; Klionsky and Schulman, 2014; 

Maruyama and Noda, 2018; Mizushima et al., 1998). PE-

conjugated LC3 is the most widely used marker of autopha-

gosomes and plays a central role in the autophagy pathway 

(Klionsky et al., 2016; Yoshii and Mizushima, 2017). 
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Fig. 3. Proposed mechanisms of LC3 deconjugation by RavZ from Legionella pneumophila. (A) The domains and overall structure of RavZ. 

The N- and C-terminal regions containing LIR motifs (N-LIR1/2 colored light brown and C-LIR red) are invisible in electron density map. 

The catalytic (CAT: residues 49–325) and membrane targeting (MT: residues 326–423) domains are colored blue and orange, respec-

tively. (B) The competition between RavZ and cysteine protease ATG4B for the same substrate, LC3B, although the cleavage sites are 

different. RavZ cleaves the peptide bond between phenylalanine and glycine, whereas ATG4B cleaves the bond between C-terminal 

glycine and the lipid, phosphatidylethanolamine (PE). (C) The ‘Tethering and Cut’ model. RavZ is targeted to the phagophore membrane 

and interacts with the LC3-PE molecules anchored in the membrane. By using N- and C-terminal flexible LIR motifs, RavZ is tethered on 

the membrane and subsequently cuts the specific peptide bond on the LC3-PE molecule. Currently, it is unclear whether RavZ cleaves 

one of the tethered LC3 molecules or other nearby LC3 molecules. (D) The ‘Lift and Cut’ model. The targeting of RavZ might be the 

same as panel (C). The α3-helix (colored pink) of RavZ docks on the membrane and lifts a LC3-PE molecule via conformational change, 

after which the LC3-PE is cleaved at the active site of the catalytic domain of RavZ. 

 

 

 

Legionella pneumophila elegantly targets this molecule to 

inhibit host autophagy (Choy et al., 2012): it secretes a cys-

teine protease RavZ to cleave a specific peptide bond be-

tween phenylalanine and the C-terminal glycine of LC3-PE 

(Fig. 3B). The C-terminal segment of LC3 precursor is re-

moved to expose the C-terminal glycine by the host cysteine 

protease ATG4B in the LC3 maturation step; furthermore, 

ATG4B also cleaves the bond between C-terminal glycine 

and PE to recycle LC3 in the cells (Maruyama and Noda, 

2018). After RavZ has cleaved LC3-PE from the phagophore 

membrane, the product cannot be reconjugated to PE as it 

lacks the C-terminal glycine residue (Choy et al., 2012). 

Therefore, Legionella RavZ competes with host ATG4B, alt-

hough there is a difference in specificity. The structure of 

ATG4B in complex with LC3 has been determined and the 

enzymatic mechanism has been proposed (Satoo et al., 

2009). The primary sequence comparison showed that RavZ 

was quite different in length and, unexpectedly, there were 

two LIR motifs at the N-terminal region (N-LIR1/2) and one 

LIR motif at the C-terminal region (C-LIR) in RavZ (Kwon et 

al., 2017b). Based on the missing electron density map, the 

regions are very flexible; conversely, they are versatile to 

seize the LC3-PE molecules on the membrane. In addition to 

these regions, there are two independent domains, catalytic 

(CAT) and membrane targeting (MT). The CAT domain 

shows a similar folding pattern to Ub-like proteases and 

contains the catalytic triad residues His176-Asp197-Cys258 

for the hydrolysis of the peptide bond (Horenkamp et al., 

2015; Kwon et al., 2017b). The function of the MT domain 

is characterized by a higher preference for phosphatidylinosi-

tol 3-phosphate, which is likely to be abundant in the au-

tophagosomal membrane (Horenkamp et al., 2015). 

Based on this structural information, a working model for 

RavZ has been proposed (Fig. 3C). Both N-LIR1/2 and C-LIR 
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tether the LC3-PE molecules on the membrane and RavZ 

cuts the third (or one of the tethered) LC3-PE molecule by 

using its CAT domain. Here, we propose a ‘Tethering and 

Cut’ model for further explanation. SAXS (small-angle X-ray 

scattering) data have shown a 1:2 RavZ-(LC3)2 complex 

model, which supports this model, although the resolution is 

relatively low (Kwon et al., 2017b). Later, another model, 

‘Lift and Cut’, was proposed independently (Pantoom et al., 

2017; Yang et al., 2017) (Fig. 3D). This model is based on 

the conformational change of the hydrophobic α3-helix, 

which may point towards the membrane, and the structural-

ly similar region in the CAT domain with lipid-binding protein 

yeast Sec14 homolog (Shf1) (Yang et al., 2017). The α3-

helix picks out the LC3-PE from the membrane and the lipid 

PE moiety is then recognized and cut by RavZ. However, 

both models are incomplete owing to the absence of the 

structure of the complex with LC3 bound to the active site of 

RavZ. Another controversy is the exact role of the two N-

LIR1/2 motifs; it is possible that the reported complex struc-

ture between RavZ and LC3 might be a crystallization artifact 

and the only second LIR2 is proposed to be critical (Yang et 

al., 2017). However, another report showed that deletions, 

and even point mutations, on any of the LIR motifs resulted 

in quite significant functional defects in cell-based assays 

(Kwon et al., 2017b). Furthermore, the structure of the 

complex between LC3 and a longer peptide comprising tan-

dem N-LIR1/2 showed that the first LIR (LIR1) was a major 

contributory factor for LC3 binding and the tandem LIR mo-

tifs formed a characteristic β-sheet conformation to aug-

ment the binding affinity (Kwon et al., 2017a). 

 

CONCLUSION 
 

To fully understand the function of proteins involved in host 

xenophagy and in the manipulation of host autophagy, the 

combination of three-dimensional structures with biochem-

istry and cell biology data is necessary. Novel findings and 

mechanisms are continuously proposed, which makes the 

explanation of the structure-function relationships of all 

molecules challenging. Therefore, we focused on two ex-

amples, the NDP52-GAL8 interaction in the host and the 

RavZ-LC3 interaction in the bacteria Legionella pneumophila. 

The structural details of the complex between NDP52 and 

GAL8 have previously been determined (Kim et al., 2013; Li 

et al., 2013) and explain how the sugar receptor is involved 

in this autophagy pathway. The autophagy receptor NDP52 

is targeted to the phagophore via LC3 interaction. We have 

generated a plausible model for this event (Fig. 2C); howev-

er, the missing link is bacterial ubiquitylation. Most probably, 

the Ub-coated bacteria are recognized by the UBZ domain of 

NDP52, but it is still unclear which molecules of the bacterial 

surface are ubiquitylated by the host E3-ligases, despite the 

identification of three E3 Ub-ligases (Huett et al., 2012; 

Manzanillo et al., 2013; Noad et al., 2017). The identifica-

tion of the ubiquitylation target(s) in bacteria is one of the 

key research directions to understand xenophagy. 

As noted, each bacterium utilizes unique molecules to 

manipulate host autophagy. Legionella pneumophila secrete 

RavZ, an LC3 deconjugating enzyme, for their survival. Struc-

tural information on RavZ has been competitively reported 

by several research groups, although some controversies 

remain. Two proposed models for RavZ action in the cells 

should be further verified biochemically and structurally. 

However, this is not straightforward because the RavZ works 

in the vicinity of the membrane and thus, all experimental 

conditions are required to mimic these environments. The 

regions containing LIR motifs are very flexible and there are 

many, which complicates the study of the RavZ-LC3 interac-

tion. To provide greater understanding of the RavZ action, 

we await the structural information of RavZ in complex with 

LC3-PE at the active site, which will be helpful to develop 

therapies against Legionnaires’ disease. 
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