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Insights into degradation mechanism of N-end rule
substrates by p62/SQSTM1 autophagy adapter
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Hyeongseop Jeong3, Jaekyung Hyun3, Yoon Ki Kim 1,2 & Hyun Kyu Song 1

p62/SQSTM1 is the key autophagy adapter protein and the hub of multi-cellular signaling. It

was recently reported that autophagy and N-end rule pathways are linked via p62. However,

the exact recognition mode of degrading substrates and regulation of p62 in the autophagic

pathway remain unknown. Here, we present the complex structures between the ZZ-domain

of p62 and various type-1 and type-2 N-degrons. The binding mode employed in the inter-

action of the ZZ-domain with N-degrons differs from that employed by classic N-recognins. It

was also determined that oligomerization via the PB1 domain can control functional affinity to

the R-BiP substrate. Unexpectedly, we found that self-oligomerization and disassembly of p62

are pH-dependent. These findings broaden our understanding of the functional repertoire of

the N-end rule pathway and provide an insight into the regulation of p62 during the

autophagic pathway.
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Protein homeostasis plays a fundamental role in cellular
physiology and is strictly regulated by two different types of
catabolic pathways: the ubiquitin-proteasome system (UPS)

and the autophagy-lysosome system (ALS)1–4. There is growing
evidence to suggest that these two systems communicate with
each other to coordinate cellular degradation processes5–7.
Intriguingly, the autophagy adapter p62/SQSTM1/Sequestosome-
1 was recently reported to recognize N-degrons, the N-end rule
substrates of the well-characterized UPS, and where ultimately
these substrates are delivered to ALS8,9. p62 is a key selective
autophagy adapter that plays a role in the degradation of various
cellular constituents such as misfolded proteins and their aggre-
gates, malfunctioning organelles, and invading pathogens10–13. It
has been known that p62 acts as a signaling hub residing in the
late endosome and lysosome14, and is involved in various path-
ways related to human diseases15–19.

p62 consists of six well-defined structural elements including
Phox and Bem1p (PB1), ZZ-type zinc finger (ZZ), TRAF6-
binding (TB), LC3-interacting region (LIR), Keap1-interacting
region (KIR), and ubiquitin-associated domain (UBA)20 (Fig. 1a).
The N-terminal PB1 domain is responsible for oligomerization of
p62, which is critical for its function and localization, the TB
domain binds to TRAF6 for modulating TNF-α signaling, LIR is
utilized for LC3-binding, which is critical for autophagy, and KIR
is employed for regulating the Keap1-Nrf2 pathway, which is
linked to major oxidative stress responses21. A great deal of
attention has been devoted to investigating the role of ubiquitin
(Ub) in selective autophagy besides its participation in the pro-
teasomal degradation system22,23, and the C-terminal UBA
domain of p62 is believed to play a role in this process24. Intri-
guingly, it was recently reported that the central ZZ-domain in
p62 plays a critical role in the recognition of N-terminal argi-
nylated BiP/GRP78 by the Arg-tRNA transferase ATE1 (see ref.8).
Therefore, this domain is particularly important for redirecting
N-end rule substrates to the autophagy pathway.

The N-end rule pathway comprises a set of Ub-mediated
protein degradation processes which controls the in vivo half-life
of proteins depending on their N-terminal residue25–27. In
eukaryotes, the N-end rule pathway comprises three classes, Arg/
N-end, Ac/N-end, and the very recently identified Pro/N-end rule
pathway28. The Arg/N-end rule was the first characterized
pathway and targets proteins with the following primary N-
terminal residues: type-1 (Arg, Lys, and His; positively charged
residues recognized by the UBR box) and type-2 (Phe, Tyr, Trp,
Leu, and Ile; bulky hydrophobic residues recognized by the ClpS-
homology domain) N-degrons. Furthermore, it is organized in
hierarchical steps whereby tertiary destabilizing N-terminal Asn
and Gln residues of N-end rule substrates are deamidated to
secondary destabilizing Asp and Glu residues, and the Arg resi-
due is subsequently attached to these destabilizing residues. A set
of endoplasmic reticulum (ER)-associated proteins, such as BiP/
GRP78, calreticulin and protein disulfide isomerase, undergoes
post-translational modification involving cleavage of a signal
sequence by specific proteases, thereby exposing negatively
charged residues8. In particular, the ATE1 enzyme in the N-end
rule pathway adds an Arg residue at the new N-terminus of BiP, a
chaperone that binds to misfolded protein aggregates. The
supramolecular complex between BiP chaperone molecules and
protein aggregates is recognized by the ZZ-domain of p62 (see
ref.8), and ultimately this multi-protein complex is delivered to
autophagosomes and degraded by lysosomes10.

p62 is an enigmatic molecule that participates in many dif-
ferent cellular processes pertaining to protein homeostasis17,29. A
proposed overall structure of p62 assumed a long helical filament
structure via the PB1 domain30, and the other domains TB, LIR,
KIR, and UBA have been relatively well studied20. However, the

function of the ZZ-domain has just begun to be explored and the
manner by which Arg/N-end rule substrates are recognized
remains unknown. Furthermore, the interplay between the PB1
and ZZ-domains has yet to be extensively investigated.

Here, we present the high resolution structures of the ZZ-
domain of p62 in complex with 8 different N-degrons including
type-1 and type-2, and subsequently identify key determinants
involved in the unusual recognition. Subsequent biochemical and
biophysical studies with p62 and N-degrons demonstrated a
critical role of oligomerization mediated by the PB1 domain.
Furthermore, it was unexpectedly found that self-oligomerization
and disassembly of p62 are essentially controlled by pH. These
findings provide fundamental insights into the manner by which
a variety of N-end rule substrates are recognized by the ZZ-
domain in addition to the role played by p62 in the whole
autophagy pathway.

Results
Structure of the ZZ-domain of p62. The structure of the ZZ-
domain of human p62 (residues 126–172) was determined by a
single-wavelength anomalous dispersion method at the zinc
absorption edge (Fig. 1b and Supplementary Table 1). The
negatively charged patch is formed by three β-strands, one α-
helix, and two zinc atoms (Fig. 1c). As with previously known
ZZ-domain structures, the zinc-coordinating residues are strictly
conserved (Fig. 1d) and are located in zig-zag order for the first
zinc atom (Zn1) coordinated by four cysteine residues and the
second zinc atom (Zn2) coordinated by two cysteine and two
histidine residues (Fig. 1d). The N-terminal U-shaped loop of the
ZZ-domain is maintained by Cys128 and Cys131 residues coor-
dinating to a zinc atom. One side of the protein surface is covered
by a highly negatively charged patch (Fig. 1b) formed by four key
residues (Asp129, Asn132, Asp147, and Asp149), which is more
narrow and shallow compared to previously determined struc-
tures of N-recognins (UBR box)31,32. These four residues are
highly conserved among p62 proteins (Supplementary Fig. 1a),
but not in other ZZ-domain proteins (Fig. 1d). Among these,
Asn132 completely differs with other ZZ-domains33,34, and even
in frog and zebrafish p62 this residue is replaced with Gln and
Asp, respectively (Supplementary Fig. 1a). Furthermore, although
NBR1 is a similar type of autophagy receptor that contains the
ZZ-domain, the ZZ-domain of NBR1 possesses divergent residues
and thus may not act as an N-recognin (Supplementary Fig. 1b).

Recognition of N-degrons by the ZZ-domain of p62. In an
effort to elucidate the manner by which the ZZ-domain of p62
recognizes N-terminal arginylated BiP/GRP78 (hereafter referred
to as R-BiP), we generated the chimeric protein N-terminal R-BiP
(R*-E19b-E20b-E21b-D22b; where “*” and subscript “b” represent
attachment to the modified N-terminus and BiP residues,
respectively) fused to the ZZ-domain using a special expression
system (see Methods for details). Using this fusion protein, we
determined the complex structure of the ZZ-domain with R-BiP
substrate at 1.45 Å resolution (Fig. 1e, Supplementary Fig. 2 and
Supplementary Table 2). As expected, the binding site of the ZZ-
domain comprises a negatively charged patch for recognition of
the positively charged N-terminal NH3

+ group of R-BiP (Fig. 1e).
The side chains of Asp129 and Asp149 in the ZZ-domain form
hydrogen bonds with the α-amino group of R-BiP (Fig. 1f and
Supplementary Fig. 3). Consistent with its important structural
role in recognizing the α-amino group of the N-degron, a recent
mutagenesis study showed that Asp129 is crucial for functionality
of the N-recognin of p62 (see ref.8). The carboxylate of Asp176 in
the UBR box, which corresponds to Asp129 in p62, was predicted
to act as the sole side chain in recognizing the α-amino
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group31,32,35, however, two side chain carboxylates from Asp129
and Asp149 tightly hold the NH3

+ group of the N-degron
simultaneously (Fig. 1f). Asp129 is located between two cysteine
residues, Cys128 and Cys131 which coordinate the first zinc atom

(Zn1), and Asp149 is located between Cys145, which coordinates
to the second zinc atom (Zn2), and Cys151, which coordinates to
the first zinc (Zn1) (Fig. 1c). Therefore, two zinc atoms are critical
for not only stable folding of the ZZ-domain, but also for proper
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location of the key residues involved in recognizing N-degrons.
Moreover, the key carboxylate of Asp129 which is involved in
recognizing the α-amino group also forms an ionic interaction
with the guanidinium group of the N-terminal arginine residue
(Fig. 1f). This completely differs from the UBR box which
recognizes positively charged type-1 N-degrons using distantly
located negatively charged residues31. Another negatively charged
residue, Asp147, also participates in the N-degron binding, and in
a manner that is not sequence-specific. The side chain carboxylate
of Asp147 interacts with the main chain nitrogen atom of the first
peptide bond between the first arginine R* and Glu19b of the N-
degron (Fig. 1f). The main chain nitrogen atom of Ile127 also
forms a hydrogen bond with the carbonyl oxygen of the first
peptide bond of the N-degron (Supplementary Fig. 3).

Since structures of the ZZ-domain have been determined for
both the apo and R-BiP complex states, we investigated the
possibility of conformational changes in the ZZ-domain of p62
upon complex formation (Fig. 1g). Since the structure is very
compact with loops tightly connected by two zinc atoms, no
marked conformational changes were identified. However, the
side chain of Asn132 is re-oriented to form a specific interaction
with the side chain of the N-degron. It is rotated 72.3° and
moved by approximately 3.0 Å to facilitate recognition of the
guanidinium group of the N-terminal arginine (Fig. 1h).
Therefore, the N-terminal arginine residue attached to cleaved
BiP by the ATE1 enzyme is recognized by the ZZ-domain of p62
via multiple layers of specificity. As noted in the sequence
alignment, this asparagine residue is not conserved in other ZZ-
domains (Fig. 1d), and therefore comprises one of the key
determinants in addition to the three aspartic acid residues
described above.

Stronger binding of oligomerized p62 to N-degrons. The dis-
sociation constants (KD) between classic N-recognins and N-
degrons (type-1 and type-2) are in the micro-molar range for the
recognition of substrates and efficient delivery for degradation by
UPS31,35,36. As described for the complex structure between the
ZZ-domain of p62 and N-degrons, the binding region in the ZZ-
domain seems to be very limited (Fig. 1e). The buried surface area
upon complex formation is only 546 Å2 and approximately 71%
of the surface of primary arginine residues is buried (192 out of
270 Å2), as analyzed by the PISA server37. In an effort to deter-
mine the binding affinity quantitatively, we measured the KD

value between the ZZ-domain of p62 and R-BiP peptide
(REEEDK–FITC) using a fluorescence polarization (FP) method
(Fig. 2a). The affinity is extremely weak with a value of over 800

μM (Fig. 2a), as expected from our complex structure, and it is
difficult to account for the specific recognition of N-degrons by
the ZZ-domain of p62. Intriguingly, the affinity between R-BiP
peptide and a GST-fused ZZ-domain is over 5-fold higher (140
μM), which must result from the dimeric effect of GST in solution
(Fig. 2a).

p62 is a multi-domain protein (Fig. 1a) and functions in an
oligomeric state in the cell. It is reasonable to anticipate that
oligomerized p62 should have much higher binding affinity to R-
BiP than the monomeric form, as shown in the case of GST-ZZ.
The domain responsible for oligomerization is the N-terminal
PB1 domain. Therefore, we generated MBP-fused PB1-ZZ
(residues 1–181) wild-type (WT) and monomeric mutants K7A
and D69A38. We generated MBP fusion proteins since it is known
that these proteins are highly stable and do not promote protein
aggregation in vitro39. Following separate purification of WT and
mutants, each protein was subjected to size-exclusion chromato-
graphy with multi-angle light scattering (SEC-MALS) to ascertain
oligomeric states (Fig. 2b). Mutations represented by K7A and
D69A in PB1 were sufficient to change the oligomeric state of p62
(Fig. 2b). WT protein formed a large oligomer with molecular
mass (MM) of approximately 400 kDa, while the K7A and D69A
mutants were mostly observed as monomeric forms with MM of
66 kDa, in addition to a small portion in dimeric form (Fig. 2b).
This result indicated that the K7A and D69A mutations in the
PB1 domain could disrupt oligomerization38,40. Similarly, results
of SDS-PAGE and Western blotting with purified WT and D69A
mutant were also consistent with the SEC-MALS data (Fig. 2c).
Furthermore, in an effort to confirm that oligomerization of p62
is only mediated by the PB1 domain, we performed a small-angle
X-ray scattering (SAXS) experiment using dimeric and mono-
meric species of the D69A mutant (Supplementary Table 3). This
result clearly showed that the ZZ-domain is structurally
independent from the PB1 oligomerization domain (Supplemen-
tary Fig. 4).

To confirm whether the oligomeric state of p62 mediated by
PB1 domain affects the recognition of R-BiP, we performed
another FP binding assay. The binding affinity of PB1-ZZ WT to
R-BiP peptide was over 10-fold higher than that of GST-ZZ (no
PB1 domain) as well as monomeric PB1-ZZ mutants (Fig. 2d).
The dissociation constant of oligomerized p62 to N-degrons is 10
μM at pH 8.0, which is comparable to that of conventional N-
recognins. Indeed, the binding constant itself is not affected upon
oligomerization of one component for the 1:1 interaction,
although there is enhanced binding affinity as a result of the
avidity associated with the multivalent binding sites. Therefore, in

Fig. 1 Structure of the ZZ-domain of p62. a Domain architecture of p62. The PB1 domain is responsible for oligomerization and localization. The ZZ-domain
recognizes both type-1 and type-2 N-degrons. The TB domain, LIR motif and UBA are involved in the interaction with TRAF6, LC3-family proteins and
ubiquitin, respectively. b Transparent molecular surface showing the electrostatic potential of the ZZ-domain. Negatively and positively charged surfaces
are colored red and blue, respectively. Side chains of residues that participate in zinc coordination are shown as stick models and bound zinc ions are
shown as slate-colored spheres. The built model of the ZZ-domain comprises residues from Val126 to Pro169 and are marked with dots and labeled. c
Schematic diagram showing zinc-coordination. The first zinc atom (Zn1) is coordinated by four cysteine residues, and the second zinc (Zn2) by two
cysteine and two histidine residues. d Sequence alignment of ZZ-domain structures in the Protein Data Bank (2e5r: human α-dystrobrevin; 2fc7: human
ZZZ3 protein; 2dip: human SWIM domain containing protein 2; 4xi6: human mind bomb 1; 1tot: mouse CREB-binding protein). Zinc-coordinated residues
are strictly conserved among all ZZ-domains, although key residues involved in the recognition of N-degrons (marked with black arrow-heads) are not
conserved. e Ribbon diagram with transparent electrostatic surface showing the structure of the ZZ-domain in complex with R-BiP substrate (REEED).
Residues coordinating zinc atoms and key residues in p62 involved in the recognition of N-degrons are shown as stick models with carbon, nitrogen, and
oxygen atoms in green, blue and red, respectively. The bound N-degron is also shown as a stick model with carbon atoms in cyan. Residues of the ZZ-
domain are labeled black and those of R-BiP are labeled red with the * and subscript “b” next to the sequence number for clarity. f Close-up view of
interaction region between the ZZ-domain and R-BiP. Hydrogen bonds are shown as dotted lines and the distance is indicated. g Superposition of the
structure of apo-ZZ-domain (gray) with that of the R-BiP complex (green). The two structures are almost identical except for Asn132 indicated by a dotted
circle. h Close-up view of conformational change of Asn132 of the ZZ-domain of p62 upon complex formation
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an effort to further confirm the FP results, we performed the KD

measurements using the surface plasmon resonance (SRP)
technique. The SPR analysis employing MBP-PB1-ZZ of p62
and R-BiP protein with different combinations showed very

interesting results. The KD values between either p62 WT or
D69A mutant and R-BiP were 20.2 and 26.1 μM, respectively,
when the p62 protein (WT or mutant) was immobilized onto the
sensor chip (Supplementary Fig. 5a, b). However, these values
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Fig. 2 Oligomerization of p62 affects the binding affinity and degradation of R-BiP. a Binding affinity measurements using FITC-labeled R-BiP peptide
against increasing concentrations of the ZZ-domain at pH 8.0. The ZZ-domain fused with dimeric GST (red line) showed higher affinity than that with the
flag-tag (blue line), which has extremely weak binding affinity as shown in the inset. The error bars represent standard error of the mean (S.E.M.) of more
than three independent experiments. b The SEC-MALS results with MBP-PB1-ZZ WT (red line) and mutants K7A (green line) and D69A (sky blue line) at
pH 8.0. The horizontal line represents the measured molar mass. Each species is indicated by an arrow with experimental (SEC-MALS) molar mass. WT
showed a higher oligomeric state whereas the K7A and D69A mutants mainly adopted a monomeric state with minor dimeric species. c The SDS-PAGE
results with MBP-PB1-ZZ WT and D69A mutant. The left blue gel is stained with Coomassie Brilliant Blue and the right shows the results of the Western
blot. The D69A mutant adopted exclusively a monomeric state whereas WT showed oligomeric forms even under denaturing conditions. d Binding affinity
measurements using FITC-labeled R-BiP peptide against increasing concentrations of MBP-PB1-ZZ WT (blue line) and mutants K7A (green line) and D69A
(red line) at pH 8.0. The error bars represent standard error of the mean (S.E.M.) of more than three independent experiments. e Degradation assay of R-
BiP generated from Ub–R-BiP using oligomerization defect mutants (K7A and D69A) in HeLa cells in the absence of MG132. Cells were treated with 50 μg/
ml cycloheximide, and then subjected to immunoblotting of R-BiP. Oligomerization defect mutants are unable to degrade R-BiP protein in the cell (see also
Supplementary Fig. 7 for p62 degradation). Uncropped images of Western blots are shown in Supplementary Figure 11
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differ markedly from 42.1 nM and 41.3 μM for p62 WT and
D69A mutant, respectively, when the R-BiP protein was
immobilized onto the sensor ship (Supplementary Fig. 5c, d).
We assumed that the local concentration of immobilized R-BiP is
high enough to show extremely tight binding via multivalent
interactions with oligomeric p62 WT. To rule out an immobiliza-
tion effect, we performed isothermal titration calorimetry (ITC)
experiments. The KD values between either p62 WT or D69A
mutant and R-BiP peptide were 26.5 and 55.9 μM, respectively,
and showed very unusual binding stoichiometry (Supplementary
Fig. 6a, b). These binding stoichiometries are difficult to interpret
since the exact oligomeric state of p62 WT is unclear and the ITC
method might be less useful for interpreting the enhanced
binding avidity. Therefore, all subsequent binding affinity
measurements were performed with the PB1-ZZ constructs using
the FP method. These data can be explained by considering that
disruption of oligomerization results in low avidity for the R-BiP
substrate and subsequent lack of R-BiP protein degradation in the
cell (Fig. 2e and Supplementary Fig. 7).

Mutational effects of residues for the N-degron recognition.
Since the recognition of substrates by p62 occurs in the cytosol,
we decided to compare the binding affinity of mutants using a
buffer at pH 8.0. As described in the complex structure, three
aspartic acid residues, Asp129, Asp147, and Asp149, and one
asparagine residue, Asn132, may play a critical role in substrate
recognition. To confirm the role of these residues, we constructed
mutants D129N, N132L, D147R, and D149R, and examined the
KD values with R-BiP peptide (Fig. 3a). Clearly, each single point
mutation reduced the binding affinity by nearly 30-fold. To fur-
ther confirm the effect of mutations, the KD values between either
D129N or D147R mutants and R-BiP peptide were measured
using the ITC method (Supplementary Fig. 6c, d). The KD values
were 461 and 180 μM for D129N and D147R mutants, respec-
tively, which are quite consistent with the FP results. The basic
arginine residue corresponding to Arg139 is also important for
the interaction with glutamic acid residue Glu19b located at the
secondary position of N-degrons (Figs. 1f, 3a). It has also been
shown that the secondary position of the N-degron partially
affects the binding affinity in the UBR box31,35, and this has been
correlated to patients with symptoms of Johanson-Blizzard syn-
drome41. These residues involved in N-degron recognition are
strictly conserved in all mammalian p62 proteins, with slight
deviation to similar residues in avian, reptile, amphibian and fish
proteins (Supplementary Fig. 1a).

To determine whether these residues involved in R-BiP
recognition are responsible for the degradation of the R-BiP
protein in vivo, we performed cell-based assays using HeLa cells
with HA-p62 mutants (D129N, N132L, R139D, D147R and
D149R) and Ub-R-BiP8. Following DNA transfection, each plate
was treated with 50 μg/ml cycloheximide for 12 h (Fig. 3b).
Consistent with the in vitro binding assays, all mutants for key
determinants showed markedly reduced degradation of R-BiP
in vivo (Fig. 3b). The autophagic degradation of R-BiP by these
recognition defect mutations resembled that displayed by the
oligomerization defect mutations (Fig. 2e).

Since the ZZ-domain of p62 recognizes the R-BiP type-1 N-
degron substrate, the key recognition residues of p62 were
structurally compared with those of the UBR box (Fig. 3c). Key
determinants involved in recognition of the α-amino group are
conserved in both N-recognins (Asp129 in p62 and Asp176 in
UBR box), but other determinants (Asn132, Arg139, Asp147, and
Asp149) completely differ from the UBR box (Fig. 3c). The
previously reported mutation D129N of p62 found in patients
with neurodegenerative disease42 can be explained by our data,

which might be a consequence of a defect in the recognition of N-
degron substrates.

Both type-1 and type-2 N-degrons recognition. A classic N-
recognin such as Ubr1 possesses two separate domains, a UBR
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Fig. 3 Mutational effects of key determinants on the recognition of N-
degrons. a Binding affinity measurements using FITC-labeled R-BiP peptide
against increasing concentrations of p62 mutants (MBP-PB1-ZZ WT—blue
line, D129N—red line, N132L—green line, R139D—violet line, D147R—
orange line, and D149R—black line) at pH 8.0. The error bars represent
standard error of the mean (S.E.M.) of more than three independent
experiments. b Degradation assay of R-BiP generated from Ub–R-BiP using
key determinant mutants (D129N, N132L, R139D, D147R, and D149R) in
HeLa cells in the absence of MG132. Cells were treated with 50 μg/ml
cycloheximide, and then subjected to immunoblotting of R-BiP. Recognition
defect mutants are unable to degrade R-BiP protein in the cell. Uncropped
images of Western blots are shown in Supplementary Figure 11. c
Superposition of structures of R-BiP-bound ZZ-domain (green ribbon) and
Scc1-bound UBR box (beige ribbon). Key residues in the ZZ-domain are
marked with black dotted circles (center) with a close-up view of each
region for details. The labeled residues for the ZZ-domain and UBR box are
colored black and dark green (underlined), respectively, for clarity
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box and a ClpS-homology domain for the recognition of posi-
tively charged type-1 and bulky hydrophobic type-2 N-end rule
substrates, respectively43. The UBR box utilizes a wider negatively
charged pocket than the ZZ-domain of p62, while the ClpS-
homology domain utilizes a deeper hydrophobic pocket (Fig. 4a).
However, a recent report has shown that the ZZ-domain of p62
also recognizes type-2 N-degrons, although with weaker affinity
than with type-1 N-degrons9. In an effort to clarify the recogni-
tion specificity we measured the KD values between MBP-PB1-ZZ
and various N-degron peptides, including type-1 and type-2 N-
degrons (Fig. 4b). As expected, arginine at the primary position
showed the strongest binding affinity with, intriguingly, tyrosine
and tryptophan residues following in second and third place,
respectively. The binding affinity between the ZZ-domain and
other type-1 substrates with histidine or lysine residues at the
primary position showed ca. a 10-fold reduction, although it was

still significant. Peptides containing proline or glutamic acid
residues at the primary position did not interact with the ZZ-
domain at all (Fig. 4b). These data clearly explain how the ZZ-
domain of p62 recognizes both type-1 and type-2 N-degrons.

However, an understanding of the manner by which the ZZ-
domain binds to type-2 substrates is problematic since there is no
deep hydrophobic pocket in the ZZ-domain, which is known to
be involved in the recognition mode for type-2 N-degrons
(Supplementary Fig. 8). Therefore, we determined the structure of
the ZZ-domain in complex with a variety of N-degrons
comprising three type-1 N-degrons (Fig. 4c and Supplementary
Table 2) and five type-2 N-degrons (Fig. 4d and Supplementary
Table 4). As described for the R-BiP complex, two aspartic acid
residues, Asp129 and Asp149, bind to the α-amino group, and
Asp147 forms a hydrogen bond with the first peptide bond, which
means that these interactions are conserved in all different N-
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terminal residues. However, the side chain of the N-terminal
residue of the N-degron is recognized differently. The side chain
of Asn132 which undergoes a conformational change plays a
critical role in interacting with the first residue of the N-degron
(Supplementary Fig. 9). The bipolar nature of the side chain
atoms (O and N) of Asn132 allow for the recognition of positively
charged type-1 substrates as well as type-2 substrates, and
especially N-terminal tyrosine and tryptophan residues since they
possess polar atoms in the side chain (Fig. 4d). The strongest
interaction with the arginyl peptide is easily explained by the
close bipartite interaction and the hydrogen bonding distance
information also provides a rationale for the affinity order
(Fig. 4c, d). Furthermore, the hydrophobic side chain of Ile127
guides the orientation of the side chain of the primary residue.
Furthermore, the phenyl ring of the phenylalanyl peptide is
properly oriented for van der Waals interactions. Therefore,
relatively small and branched hydrophobic residues at the
primary position might provide very weak (or no) interactions
with the binding patch of the ZZ-domain. Our structural
information clearly explains the affinity measurement data
(Fig. 4b) as well as previous pull-down assay results showing
that type-1 N-degrons and only a subset of type-2 N-degron
peptides (Phe, Trp, and Tyr) displayed binding affinity with p62
(see ref.9).

pH-dependent oligomerizaion of p62. A previous UBR box
study showed that binding affinity with N-degrons was affected
by the protonation state of residues, and that stronger binding
was observed at lower pH31. Therefore, we examined the dis-
sociation constant of the ZZ-domain of p62 with N-degron at
lower pH. The dissociation constant KD of MBP-PB1-ZZ-domain
with R-BiP peptide at pH 6.0 was 338.6 nM, which is an order of
magnitude lower than that at pH 8.0 (Fig. 2d and Supplementary
Fig. 10). This difference is much more marked than that observed
for the UBR box, and most probably results from the protonation
states of key side chain residues of the ZZ-domain. To verify this
pH effect, we performed the same KD measurement using a GST-
ZZ-only construct, which yielded a KD value of 11 μM at pH 6.0
(Fig. 5a). Furthermore, the oligomerization defect mutants K7A
and D69A showed significantly lower binding affinity with the R-
BiP peptide (Fig. 5a), implying that the oligomeric state is affected
by pH.

To examine the effect of pH on oligomeric states, MBP-PB1-
ZZ WT and mutants K7A and D69A were subjected to SEC-
MALS analyses (Fig. 5b). Results showed that the MBP-PB1-ZZ
WT polymer is soluble with MW of 1 MDa at pH 6.0 (Fig. 5b),
while changes in the size of the mutants at different pH were not
significant (Figs. 2b, 5b). Then, we further checked the pH
dependency at pH values less than 5.0 (Fig. 5c). The oligomeric
states of p62 WT were compared at more physiological (7.4) and
acidic (4.5) pH values. The estimated MWs at pH 7.4 and 4.5 are
approximately 690 and 180 kDa, respectively. Decameric or
higher oligomeric states were observed at pH 7.4, which were
larger than those observed at pH 8.0, being hexameric or higher
(Fig. 2b). Intriguingly, the oligomeric state of MBP-PB1-ZZ WT
at pH 4.5 might be much smaller, such as a trimer. To determine
if this small MW is caused by denaturation of p62, a Kratky plot
of the SAXS data at pH 4.5 was examined, and clearly showed the
pattern of a folded protein (Fig. 5d). To examine the other
possibility whether the reducing reagent is important for
oligomerization, we performed the same experiments under
non-reducing conditions and found that the oligomeric state was
not affected by reducing agent. These results clearly showed that
p62 protein adopted various sizes (oligomeric states) in a pH-
dependent manner.

pH-dependent regulation of R-BiP aggregates by p62. As
described above, the oligomeric states of p62 mediated by the PB1
domain are affected by the pH conditions, and thus the binding
affinity between the ZZ-domain and R-BiP is also markedly
influenced. To analyze this phenomenon more systematically, we
monitored oligomer (or aggregate) formation of p62 with varying
pH (Fig. 6a). The presence of aggregation or high-order oligomer
generates an increase in turbidity, which is very similar to the
standard chaperone activity assay44. As expected, there is no
turbidity using p62 WT at neutral pH. However, the turbidity
markedly increases from pH 6.0 since p62 forms a polymer with
MW of 1 MDa (Fig. 5b). Intriguingly, the turbidity decreased
dramatically at more acidic pH, suggesting that the p62 polymer
changes to a state comprising smaller oligomers, which is con-
sistent with SEC-MALS results (Fig. 5c). We then employed
electron microscopy (EM) to further examine the pH-dependent
oligomeric states of p62 (Fig. 6b). It has been shown that the p62
protein forms a filament-like structure using the PB1 domain30.
Our EM results were extremely intriguing. Most of the proteins
were found to adopt huge filamentous forms at pH 6.0 and 5.5,
whereas many smaller oligomers with a few filamentous forms
were observed at ca. neutral pH (Fig. 6b). At pH 5.0 or below, the
oligomeric states of p62 are even lower, and are therefore too
small to visualize. Since the oligomerization-defect mutants K7A
and D69A are mainly monomers in solution at pH 8.0 and 6.0,
they were also too small to visualize using EM.

We further examined the pH-dependent behavior of the R-BiP
substrate and clearly this protein aggregated at lower pH values
with no recovery whatsoever (Fig. 6c). More interestingly, the
mixture between p62 and R-BiP behaved almost identically to
that of p62 alone, suggesting that p62 binds to the R-BiP substrate
to block aggregation as a chaperone molecule (Fig. 6c). When the
pH of the sample mixture decreased to less than 5.0, components
in the mixture might be dissociated into smaller sizes of the p62
and R-BiP complex based on the turbidity (Fig. 6c). We also
performed EM experiments with a mixture of p62 and R-BiP. In
contrast to the EM image of p62 in the presence of ubiquitylated
cargos45, filamentous p62 did not form clusters in the presence of
R-BiP. To further examine this phenomenon, the dissociation
constant between MBP-PB1-ZZ and R-BiP peptide was measured
with varying pH (Fig. 6d). Binding at extreme alkaline (pH 8.5
and 9.0) and acidic (pH 5.0 and 4.5) pH was not detected, and the
binding affinity gradually increased from pH 8.0 to 6.0 and then
decreased at pH 5.5. The binding affinity near physiological pH is
in the micromolar range and increases toward the nanomolar
range under slightly acidic conditions near pH 6.0. Ultimately, no
binding occurs under lysosomal pH conditions. These are very
interesting findings that explain the cellular behavior of p62 in
the autophagy pathway from cargo selection to lysosomal
degradation.

Discussion
The arginyl N-end rule pathway and is mediated by the Ubr1 N-
recognin which possesses separate domains involved in the
recognition of positively charged type-1 and bulky hydrophobic
type-2 N-degrons (Fig. 7a). These domains of classic N-recognins
specifically bind target substrates with affinity at the micro-molar
level, and the substrates are then ubiquitylated by the C-terminal
RING domain46. The affinity is optimal for selecting and deli-
vering ubiquitylated substrates into the 26S proteasome. In con-
trast, the ZZ-domain of p62 can recognize both type-1 and type-2
N-degrons, although its affinity for arginine in the primary
residue location is the highest (Figs. 4b, 7a). Our structural and
biochemical measurement data showed that the presence of tyr-
osine or tryptophan at the primary position resulted in relatively
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high affinity because these side chains contain polar atoms,
oxygen in tyrosine and nitrogen in tryptophan that can form
hydrogen bonds with the side chain of Asn132 of the ZZ-domain.
Except for Asp129 which recognizes the α-amino group of N-
degrons (conserved in the UBR box), the other negatively charged
residues are not conserved in the UBR box or other ZZ-domains
including other autophagy receptors, such as NBR1 (Supple-
mentary Fig. 1b). Intriguingly, the ZZ-domain in plant N-
recognin PROTEOLYSIS1 (PRT1) is responsible for recognizing
bulky aromatic N-degrons47,48. The Asp129 residue is conserved
as Asp312 in PRT1, and a few other aspartic acid and metal
coordinating cysteine residues are also conserved. Although the
Asn132 residue is not conserved, the loops in PRT1 corre-
sponding to those in p62 are slightly longer and hydrophobic
residues Val316 and Ile333 are present. Therefore, it is tempting
to speculate that the ZZ-domain of PRT1 recognizes bulky aro-
matic N-degrons in a fashion similar to p62, although specific
recognition is derived from the different spatial allocation of
recognizing residues.

p62 is not an E3 Ub-ligase and thus there is no step for deli-
vering substrates to the proteasome. Instead, p62 binds to cargo
molecules such as protein aggregates and is encapsulated together
into the autophagome and is ultimately degraded by lysosome in
a suicide manner. Therefore, dissociation of p62 from the cargo
molecules is unnecessary for the autophagic pathway. Based on
our biochemical data, p62 has extremely low affinity for the R-BiP
substrate when present as a monomer, and the functional affinity
gradually increases during cellular processes that enhance avidity

via oligomerization. Once it binds, the p62 molecule is degraded
together with the protein aggregates in the lysosome (Supple-
mentary Fig. 7). This suicide mechanism is now clearly explained
by our biochemical analysis. Furthermore, the monomeric
mutants K7A and D69A with altered PB1 domain of p62 are
unable to facilitate degradation of R-BiP in cells (Fig. 2e), just as
in the case of the binding defect mutants D129N, N132L, R139D,
D147R, and D149R with altered ZZ-domain of p62 (Fig. 3b).
Although the cellular output of mutants with altered PB1 and ZZ-
domain are identical, the underlying mechanisms differ. Oligo-
merization of PB1 greatly increases its avidity for the R-BiP
substrate (Fig. 7b), and a similar situation may exist for the UBA
domain, although it is reversed. Although it has been shown that
the binding affinity between Ub and UBA is also very weak49,50,
the UBA domain of p62 binds poly- or multi-ubiquitylated
substrates very strongly with multiple chances. According to a
recent report of the interaction between filamentous p62 and
ubiquitylated cargos, they spontaneously coalesce into larger
clusters which further interact and crosstalk with autophagy
machinery45.

Our findings on the pH-mediated regulation of p62 oligo-
merization are intriguing since the pH environment changes as
the autophagic pathway progresses51. Quantitative analysis by
confocal pH-imaging classified the autophagosome (5.8 < pH <
6.2), early autolysosome (5.4 < pH < 5.8), mature autolysosome
(5.0 < pH < 5.4) and lysosome (pH < 5.0). Clearly, autophagic flux
begins from higher physiological pH of about 7.4 (in mammals)
to ultimately a pH below 5.0 within the lysosome. Our in vitro
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Fig. 5 Oligomeric states of p62 are controlled by pH. a Binding affinity measurements using FITC-labeled R-BiP peptide against increasing concentrations of
p62 constructs (MBP-PB1-ZZ WT—blue line, MBP-PB1-ZZ K7A—red line, MBP-PB1-ZZ D69A—green line, GST-ZZ—violet line, and Flag-ZZ—wine line) at
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ZZ WT (red line) and mutants K7A (green line) and D69A (sky blue line) at pH 6.0. The horizontal line represents the measured molar mass. Each species
is indicated by an arrow with experimental (SEC-MALS) molar mass. WT protein adopted huge polymeric states whereas the K7A and D69A mutants
adopted mainly monomeric states with minor dimeric species as shown in Fig. 2b. c The SEC-MALS result with MBP-PB1-ZZ WT at physiological pH 7.4
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pH 4.5. d Kratky plot of SAXS experiment to verify folding of p62 at pH 4.5
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experimental data of p62 can account for the autophagic steps of
aggrephagy in the cells. Protein aggregates (with R-BiP) are
recognized by small oligomeric p62 with low affinity at pH 7.4.
The local concentration of p62 may increase to facilitate further
oligomerization since there are more p62 molecules near the
aggregates. The interaction between the ubiquitylated cargos and
UBA domain of p62 may play a critical role in the formation of a
larger and tighter cluster45. Furthermore, another autophagy
receptor, NBR1, directly cooperates with p62 to form a cluster
with greater efficiency. In the meantime, p62 is targeted to the
autophagosomal membrane using its LC3-interacting region
(LIR) motif. The membrane vicinity might be associated with a
relatively low pH due to the negatively charged polar head groups
of the lipids. This causes further acceleration of oligomerization,
and as a result p62 and cargo aggregates form a very strong
complex within the autophagosome, and even stronger complexes
within early and mature autolysosomes whose environments are
associated with even lower pH. Then, we were interested in
examining the fate of the strong complex under acidic pH con-
ditions of the lysosome. It is known that high molecular weight
aggregates such as inclusion bodies are very stable within cells
since protein aggregates are not easily attacked by proteases.
Surprisingly, p62 polymer and aggregates turn into smaller-sized
molecules under lysosomal pH conditions, suggesting that the
strong complex between p62 and aggregates are now dissociated
(Fig. 7b). The smaller proteins, cargo, as well as p62 are now
easily degraded by a variety of lysosomal proteases including
cathepsins. Although this proposed model needs to be validated

within cells, our findings in the current study provide many
insights into the cellular function of the key autophagy receptor
p62 with respect to optimal degradation of cargo aggregates, and
which broaden our knowledge of N-degron recognition in the N-
end rule pathway.

Methods
Protein sample preparation. The PB1-ZZ-domain of p62 (residues 1–181) WT
and various mutants were expressed as MBP-fused forms. The mutation was
introduced by PCR-mediated site-directed mutagenesis (Supplementary Table 5).
The ZZ-domain (residues 122–181) WT and various mutants were expressed as
GST-fused forms. Recombinant proteins were overexpressed in Escherichia coli
BL21(DE3) cells (Novagen, 69450) in LB broth. Cells were grown at 37 °C at 160
rpm until the OD600 reached 0.7, and were then immediately induced by addition
of isopropyl β-D-1-thiogalactopyranoside (IPTG) to a final concentration of 1 mM.
Prior to induction, 200 μM ZnCl2 was added to the culture. Following induction,
cells were grown for 16 h at 18 °C. The MBP-fused PB1-ZZ-domains were purified
by amylose affinity column chromatography (eluting with 50 mM Tris-HCl pH 8.0,
100 mM NaCl, 1 mM TCEP and 10mM maltose) and the GST-fused ZZ-domain
constructs were purified by GST affinity column chromatography. All constructs
were further purified by anion exchange column chromatography using HiTrap Q
FastFlow (GE Healthcare, 17-5156-01). Finally, all proteins were passed through a
Hi-Load 16/600 Superdex 200 or 16/600 Superdex 75 gel filtration column 75 (GE
Healthcare, 28-9893-33) pre-equilibrated with 20 mM Tris-HCl pH 8.0, 150 mM
NaCl and 1 mM TCEP.

The domain boundary of ZZ (residue 126–172) was further optimized for better
crystallization. For complex structures, various primary residue mutants of N-
degron sequence (REEED)-fused ZZ-domains were expressed with an N-terminal
His6-LC3B tag. The His6-LC3B-fused ZZ proteins were purified by loading onto a
Ni-NTA affinity column and then eluted using a liner gradient of imidazole (0–500
mM). The His6-LC3B tag was removed using human ATG4B protease (Lab made)
by overnight incubation at 4 °C, and ZZ constructs with various N-degron
sequences were further purified using a cation exchange column. Proteins were
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at various pH ranging from 4.5 to 9.0. Strong nano-molar scale binding was observed at pH 5.5 and 6.0, while no binding was observed under extremely
acidic or basic conditions. The error bars represent standard error of the mean (S.E.M.) of more than three independent experiments
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further purified and concentrated to 15~25 mg/ml for crystallization using Hi-Load
Superdex 75 pre-equilibrated with 20 mM Tris-HCl pH 8.0, 150 mM NaCl and 1
mM TCEP.

Crystallization and structure determination. We crystallized ZZ (residues
122–181 or 126–172) and N-degron-fused ZZ-domains at room temperature in
sitting drop plates by the 1:1 mixing of proteins (15–25 mg/ml) and mother liquor
(100 mM Bis-Tris pH 6.5 and 20–30% PEG MME 2000—ZZ [122–181]; 100 mM
Tris-HCl pH 8.5 and 3.0 M NaCl—ZZ [126–172]; 100 mM MES pH 6.0, 30% PEG
600, 5% PEG 1000 and 10% glycerol—N-degron fused ZZ). Apo and complexed ZZ
crystals were flash-frozen in liquid nitrogen with 20–30% glycerol as a cryopro-
tectant in the original mother liquor. Data were collected at Photon Factory,
Spring-8 in Japan and Pohang Accelerator Laboratory (PAL) in South Korea. Initial
phases were determined with a 1.77-Å resolution SAD data set using the REEED-
fused ZZ crystal collected at the absorption edge of the zinc atom (λ= 1.282282 Å)
at beamline 44XU, Spring-8. Zn-site determination, phasing and automatic model
building were performed with the SAD phasing module as implemented in the
Phenix software package52. The SAD-phased map was of excellent quality, which
allowed the AutoBuild utility in Phenix to build a near complete atomic model53.
Apo ZZ structures were solved by the molecular replacement program Phaser in
Phenix54. The model solution obtained by Phaser was rebuilt and refined in
iterative cycles with Coot55. Ramachandran values were calculated with
Molprobity56.

SEC-MALS. SEC-MALS experiments were performed using a fast protein liquid
chromatography system connected to a Wyatt MiniDAWN TREOS instrument

and a Wyatt Optilab rEX differential refractometer. Superdex 200 Increase 10/300
or Superose 6 Increase 10/300 gel filtration columns were pre-equilibrated with
three different buffers (50 mM sodium acetate pH 4.5, 50 mM MES pH 6.0, or 50
mM Tris pH 8.0) in the presence of 100 mM NaCl and 1 mM TCEP normalized
using ovalbumin and BSA. WT and D69A mutant PB1-ZZ proteins, prepared
separately by the methods described earlier, were injected (1–3 mg/ml, 0.5 ml) at a
flow rate of 0.5–0.75 ml/min. Data were analyzed using the Zimm model for static
light scattering data fitting and represented using an EASI graph with a UV peak in
the ASTRA V software (Wyatt).

Surface plasmon resonance. All SPR experiments were conducted using a BIA-
core 2000 instrument at the Korea Basic Science Institute (KBSI) using a buffer
comprising 20 mM HEPES pH 7.5, 100 mM NaCl and 1 mM DTT. Initially, MBP-
fused PB1-ZZ WT and D69A mutant were immobilized onto the CM5 chip
according to the manufacturer’s instructions. Various concentrations of R-BiP
N407 (5–100 μM) were then injected at 30 ml/min over the chip. For the converse
analysis, the R-BiP protein was immobilized onto the CM5 chip and then various
concentrations of either p62 WT or D69A mutant (0.5–50 μM) were used for the
experiments. The responses of R-BiP N407 and p62 proteins were calculated by
subtracting that of the BSA-immobilized flow cell. All experiments were performed
in triplicate. Data were calculated using Scrubber2 software.

Isothermal titration calorimetry. For the ITC experiments, ITC buffer (50 mM
Tris-HCl pH 8.0, 100 mM NaCl and 1 mM TCEP) was used for the binding
experiment. MBP-PB1-ZZ p62 WT, D69A, D129N and D149R mutant proteins
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were diluted to a concentration of 20–80 μM in ITC buffer and N-degron peptide
(R-E-E-E-D-K) was dissolved in the same buffers at a concentration of 0.5–1.2
mM. The experiment was performed at 25 °C using a Microcal PEAQ-ITC (Mal-
vern). Each peptide was injected 19 times (2 μl each) into 280 μl samples of each
protein. The experimental data were calculated using the embedded analyzing
software package provided with the instrument. At least three experiments were
performed using varied peptide and protein concentrations.

Small-angle X-ray scattering. A sample of MBP-PB1-ZZ WT was prepared in gel
filtration buffer comprising 25 mM Tris-HCl (pH 8.0), 100 mM NaCl, 1 mM TCEP
and 5% (w/v) glycerol. The protein concentration was diluted serially from 20 to 1
mg/ml. Scattering data were collected at beamline 4 °C, PAL, South Korea (Sup-
plementary Tables 3). Briefly, the scattering images from proteins at various
concentrations were reduced into 2D data via circular integration. Preliminary
analysis of the 2D data with PRIMUS (ATSAS program suite) provided the radius
of gyration (Rg), Porod volume and experimental molecular weight. Ab initio
modeling and averaging of these models were performed using DAMMIF and
DAMAVER, respectively57. Rigid body modeling of the crystallographic structure
on dummy-atom models was computed using the Situs program suite58.

The initial model employed to perform a molecular simulation against the
SAXS envelope was established by combining MBP (PDB ID: 5JST [https://www.
rcsb.org/structure/5JST]), p62 PB1 (PDB ID: 4MJS [https://www.rcsb.org/
structure/4MJS]), linker (modeled by Chimera) and the ZZ-domain (PDB ID:
5YP7) using the build structure command in Chimera. The SAXS electron
envelope map from the ab initio DAMMIN model was generated using the pdb2vol
command (Situs program suite). The SAXS density map was converted to an
MDFF (Molecular Dynamics Flexible Fitting) potential UEM prepared via the
MDFF plugin of VMD59,60. Rigid body refinement using the colores command
(Situs) was performed to fit the initial model into the density map. In the first step
of MDFF, the g-scale was usually set to 0.3, and in the minimization step, the g-
scale was to 10. The MD simulation was typically performed until the system
showed no significant change with respect to RMSD (usually over 0.5 ns).

Cycloheximide-chase protein degradation assay. HeLa cells were cultured in
DMEM (HyClone) containing 10% FBS (HyClone) and 1% penicillin/streptomycin
(HyClone). Cells were transiently transfected with plasmids using Lipofectamine
2000 (Invitrogen) for mammalian expression. For protein degradation analysis,
HeLa cells at 80% confluence were transiently transfected with plasmids expressing
HA-p62 (either WT or mutants) and Ub-R-BiP. For the blocking of protein
synthesis, cells were treated with 50 μg/ml cycloheximide (Sigma-Aldrich) for 12 hr
prior to cell harvesting. Cultured cells were pelleted by centrifugation and pellets
were resuspended in phosphate-buffered saline (PBS). A volume of 150 μl was then
mixed with 150 μl of 5X SDS-PAGE loading buffer (125 mM Tris-HCl pH 6.8, 4%
SDS, 10% 2-mercaptoethanol and 20% glycerol). Each sample was heated for 5 min
and 0.1 mg of total protein was subjected to Western blotting. Following antibodies
were used in this study: rabbit monoclonal anti-p62 (Cell Signaling Technology,
8025, 1:1000), rabbit polyclonal anti-R-BiP (Abfrontier, AR02-PA0001, 1:1000),
mouse monoclonal anti-β-actin (Sigma-Aldrich, A5441, 1:20,000), rat monoclonal
anti-HA (Roche, 1867431, 1:20,000), mouse monoclonal anti-His-HRP (Santa
Cruz, sc-8036 HRP, 1:20,000) and mouse monoclonal anti-MBP-HRP (NEB,
E8038S, 1:2000).

Fluorescence polarization assay. FITC-labeled R-BiP/GRP78 peptide and all
mutant peptides were dissolved to 1 mM concentration in buffers (50 mM MES pH
6.0 [or 50 mM Tris pH 8.0], 100 mM NaCl, and 1 mM DTT) and sequentially
diluted with binding buffer up to 100 nM in each 40 μL reaction well. Purified GST-
ZZ, MBP-PB1-ZZ WT and the respective mutants were also serially diluted in
binding buffer and mixed into each reaction well at a concentration ranging from
400 nM to 3 mM. Fluorescent measurements to detect the change in light polar-
ization of the FITC-labeled peptide were performed in a 384-well format on a
Corning black plate reader with excitation and emission wavelengths of 485 and
525 nm, respectively. A nonlinear graph of p62 construct concentration-dependent
polarization was calculated and drawn using GraphPad Prism 7 software.

Electron microscopy. All EM experiments were conducted at KBSI. Purified MBP
p62 PB1-ZZ WT protein was diluted to a concentration of 200 nM. Fifty micro-
liters of sample was loaded onto glow-discharged carbon-coated EM grids, and
then rinsed and stained with 2% (w/v) uranyl acetate. Images were recorded on a
CCD camera (1k/4k, FEI) using a Tecnai G2 field emission gun electron micro-
scope operated at 120 kV with low-dose mode.

pH-dependent protein aggregation assay. Purified MBP p62 PB1-ZZ WT and
R-BiP N407 proteins were diluted to a concentration of 150 μM and 140 μM,
respectively. Two-hundred microliters of each sample was mixed with reaction
buffer (50 mM Bis–Tris pH 7.0, 100 mM NaCl and 1 mM TCEP) in a UVette
(Eppendorf). After adding 20 μl of 50 mM HCl to the protein sample, the pH and
OD600 were measured using a semi-micro electrode and UV/VIS spectrometer,
respectively.

Data availability. Atomic coordinates and structure factor files have been
deposited in the Protein Data Bank under following accession codes: 5YP7 (apo),
5YP8 (REEED complex), 5YPA (KEEED complex), 5YPB (HEEED complex),
5YPC (FEEED complex), 5YPE (YEEED complex), 5YPF (WEEED complex),
5YPG (LEEED complex), and 5YPH (IEEED complex). All other data are available
from the corresponding author upon reasonable request.
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